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Narozhnaya and Rykov [i] and Rykov and Skobeev [2] describe a method for and the re- 
sults of determination of the mechanical characteristics of soils with allowance for their 
viscoplastic properties under short-term dynamic loads. The actual quantitative character- 
istics are adequately substantiated only as applies to a one-time loading. 

The results of determination of the mechanical characteristics of sandy and clayey 
soils with allowance for their cyclic loading are presented below. The introduction of 
refinements to the formulation of the soil model was required in this case [i, 2]. More- 
over, new data on limiting dynamic diagrams [3], and also additional experimental results 
for a cyclic dynamic loading [4] are defined more precisely for these soils. 

It is assumed that the compressibility of a soil in uniaxial dynamic compression is 
described, as in [i, 2], by a strain of the form [5] 

aelOt = (tIE (e, e,)) OglOt + g(a, ~), E(e, e,) = / E (8), a >  l(e, e,), 
[E,  (~, ~,) ~ ~< I (~, s,).  

(1) 

Here, g(o, ~), E(e), and E,(e, e,) = re' (e, ~,) are monotonically increasing functions of 

the arguments themeselves, g > 0 when o - f(e, E,) > 0; g----0 when o - f(e, ~,) ~ 0; 

f(g, e,) is the static compression diagram of the soil (when $ = Be/St = 0), and g, is the 
maximum strain corresponding to the start of unloading. 

From (i), we have the limiting dynamic compression diagram o = i E($) d$----~(e) , when 
0 

= ~, and the limiting static compression diagram o = f(e, e,) when ~ = 0; for the latter 
diagram, there are different loading and unloading branches, as defined by the condition 
o - f(E, 0) ~ 0. 

The ~(e) and f(e, 0) functions in [i, 2] are obtained in the form 

(El, K1, mz, m2, vl, and v 2 are experimental coefficients given by Rykov [3] for the sands 
and clays with allowance for the large range of loads as compared with [i, 2]; Table i: 
rows 1 and 2 correspond to a sand with a mass density P0 = 1.50-1.52 g/cm n, and a gravi- 
metric moisture content w = 0.05 and 0.15, respectively; and, row 3 corresponds to a dense 
clay with P0 = 1.70 g/cm 3 and w = 0.22). 

The f(e, g,) diagram is much more precisely defined during unloading as compared with 
[i, 2], and considering the cyclic loading, is represented as 

/(e, e,) = (e - -  e0) [K,  + (a, /(e,  - -  e0) - -  K , )  e-"*(~*-e~ (2)  

H e r e ,  g0 i s  t h e  r e s i d u a l  d e f o r m a t i o n  c o r r e s p o n d i n g  t o  u n l o a d i n g  o f  t h e  p r e v i o u s  l o a d ,  K, i s  
t h e  i n i t i a l  c o m p r e s s i o n  modulus  d u r i n g  r e p e a t e d  l o a d i n g  ( s e e  T a b l e  1 ) ,  and a ,  i s  a c o e f f i -  
c i e n t  computed f rom t h e  c o n d i t i o n  o f  c o n t i n u i t y  and sm o o th n es s  o f  c u r v e  (2)  a t  p o i n t  r = 
~,, o = o, = f(~,, 0): 

~ , =  L ~ , _ K , ( ~ , _ ~ 0 ) j  ~, ~0, 

The s 0 ( e , )  r e l a t i o n s h i p  f o r  a c y c l i c  l o a d i n g  i s  a l s o  e s t a b l i s h e d  on t h e  b a s i s  o f  t h e  
p r o c e s s i n g  o f  e x p e r i m e n t a l  r e s u l t s  [1 ,  2, 4] ( F i g .  1 ) :  
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TABLE 1 

Speci'-' E,, MPa 
men 
NO. K,, l~a 

100 
15 

32t,6 
30 *) 
2992 

t0 

m__L 
m2 

t37,3 
it7,6 
35,1 

160 *) 
0,6 

2600.0 

~2 

i,96 
2,37 
1,83 

2,50 *) 
1,66 
3.oo" 

co, m/ K,,MPa 
sec 

250 t73 

460 t53 

1t89 200 

0,74 0,94 

0,70 0,00 

0,75 t,52 

*Coefficients were obtained on the basis of the codi- 
fication of experimental-test data [2, 3]. 
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80 = k ,  + m , 8 ,  

(k, and m, are experimental coefficients (see Table I)). Curves 1-3 in Fig. 1 correspond 
to the data of rows 1-3 in Table i. 

In contrast to [i, 2], the g(o, e) function was adopted in the form 

g = ~ ( a ) ( ~  - I ( 8 ,  8 , ) )  ~, 

~l = [~h, Oa/Ot >1 O, 
[~loe -=(~**-a), OalOt < 0 

(3) 

for the processing of the results of cyclic dynamic tests (o** is the maximum stress attained 
in a given load cycle, and ~, q0, and ~ are experimental coefficients). 

The method by which ~, q0, and a are determined is based on the selection of their 
combinations, which as in [i, 2], minimize the standard deviation 6 of the computed E(t) 
curves from the average statistical curves obtained in experiment under a cyclic dynamic 
load: 

8 - P ~  D N]~, ~ ,  [e~j (• • • e 2 , = -<~s>], (4) 

I Z (tj where • = • • = N0, xa = a are minimization parameters, <eij> =~ eis ) is the 
l=l 

average strain value when t = tj from the results of a series of tests for a certain deforma- 
tion regime, m is the number of tests in the series, J0 is the number of the interval cor- 
responding to the moment when a quasi-static regime is established [2], s is the number 
of load cycles on the same specimen in the series, eij----ei(t j) is the computed strain value 
for given times t = tj (j = i, 2 ..... n), and n is the number of intervals into which time 
is partitioned in pro~essing the experimental results. 
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The computed e(t) curve is calculated from (I) by integrating for a load o(t) known 
from experiment: 

sj+~ = es + hej+~l~, (5) 

A 5+1/= = E + n - / ( At, 

A~g+~/2 = ~i+i- ~s, ~s+u= = (~J + ~+,)/2 

( s j -  e(ti), ~1+U2--~-~%(tj + (i/2)At), a J + l / 2 -  ~ + (t/2)At)). 

In connection with the fact that Eq. (I) cannot be written in explicit form with re- 
spect to e, the implicit quantity ej+i/2, the value of which is found by iteration until 

its deviation from the preceding is no less than 10 -5 (the initial value Ej+I/2 = gj), is 

introduced to relationship (5). The partitioning increment At employed for the experi- 
ments and the processing of the results using the automated system in [4] was 0.2.10 -a sec. 
In processing the data in [i, 2], the increment was appreciably larger. In these cases, 
therefore, the intermediate values of the load o(t) were determined using a Lagrange inter- 
polation equation. It was assumed that those values of ~, q0, and a for which the condition 
6 g 60 (60 is the average (with respect to the entire process) relative confidence interval 
for the given series of experiments (experiment accuracy)) are the desired values. 

The search for • q0, and a was carried out in the following order. The coefficients 
q0 and • for the loading process when 80/8t e 0 (a = 0 in accordance with (3)) were determined 
initially on the basis of the minimization of (4). The contour lines characterizing the 
distribution of the error of (4) and the plane of the coefficients u and q0 are the result 
of computation in this stage of calculations. Each of the effects is treated as independent, 
and the values of g0 are assigned from tests, while the dispersions are summed. In the 
second stage of the calculations, function (4) is minimized with respect to the parameters 
q0 and a for a fixed u, which is adopted on the basis of the previous stage. In this case, 
a is determined and No is defined more precisely. In the third stage, repeated minimization 
of function (4) with respect to • and q0 is carried out for a selected a; in this case, 
each succeeding cycle is treated as a continuation of the previous one, while the initial 
deformation is calculated for each successive cycle. 

The results of this kind of calculation for two series of tests of a sandy soil with 
P0 = 1.50-1.52 g/cm 3 and w = 0.05 from [i, 2] (curves i) and from [4] (curves 2) are pre- 
sented in Fig. 2a-c. The figures on the contour lines correspond to the deviations of (4). 
The experimental accuracy in the tests was ~0 = 0.10-0.12. 

TABLE 2 

S~aci- 
m-en I~o. 

i 
2 
3 

,,m 

8,0 0,5 
5.0 0,5 

,~  
0,tt [ 
0,08 
OAO 

~a 

0,t2 
0,10 
OAO 
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It is apparent in Fig. 2a (first stage of minimization) that m can be set equal to 
0.5. The computational results obtained in the second stage of minimization (Fig. 2b) sug- 
gest that the minimum error 6 corresponds to ~ = 60 when no = 6.0. It follows from the 
third stage of minimization (Fig. 2c) that x = 0.5 and q0 = 6.0 can be taken as the computed 
values of m and q0. 

The mechanical characteristics of the sandy soils and clays under a cyclic dynamic 
loading, which were obtained by this method using published data on the limiting diagrams 
[3], are presented in Table 2. 

The results of comparison between the computed o(s) curves and experimental values 
from [1-4] are presented in Figs. 3-5. w = 0.05 (Fig. 3) and w = 0.15 (Fig. 4) for the 
sand with P0 = 1.50-1.52 g/cm 3, and w = 0.22 (Fig. 5) for the dense clay with P0 = 1.70. 
Lines 1-3 in Figs. 3-5 were computed for three successive specimen loadings, lines 4 for 
the static f(e, 0) compression diagram, and lines 5 for the limiting ~(e) dynamic diagram. 
Points 6 and 7 correspond to average statistical experimental values with confidence inter- 
vaIs determined with a reliability of 0.95 (6 - loading, 7 - unloading in each of the cycles). 
It is apparent that in the majority of cases, the computed o(e) curves fall within the bounds 
of the confidence intervals. On average, the accuracy of approximation is 8-11% (see Table 
2). A more significant discrepancy occurs only during unloading in the third loading cycle 
of the dense-clay specimens (see Fig. 5). This is associated with the insufficient accuracy 
of determination of the static diagram for this soil when s ~ 0.06, which in this region 
of deformations, is adopted for calculations on the basis of the extrapolation of experi- 
mental results [3] actually obtained in the 0 ~ e ~ 0.06 region. 

In conclusion, let us point out that there is a certain law governing the variation 
in the coefficient ~ as a function of the spread velocity c o of weak disturbances in the 
soils under consideration (Fig. 6). 

Thus, the cited strain law, which takes into account the variation in the viscous prop- 
erties of sandy and clayey soils during unloading, makes it possible to describe the cyclic 
dynamic loading of soils in uniaxial compression under plane strain with a sufficient degree 
of accuracy. In this case, the results of determination of the coefficients ~ and q0 
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differ from those presented in [i, 2]; this is associated with both the more precise defini- 
tion of data on the limiting dynamic compression diagrams of the soils under consideration, 
and allowance for the peculiarities of their cyclic loading. 
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METHOD OF ELASTIC CHARACTERISTIC VARIATION IN THE PROBLEM 

OF A LIMITING LOAD 

R. A. Kayumov UDC 539.214:539.374 

One of the questions of ideal plasticity theory is that of finding limiting loads with 
which a structure ceases to resist the action of external forces. Two-way evaluation of 
them may be obtained with the help of static and kinematic theorems [i]. Given below is 
a procedure based on these theorems making it possible to approach successively the upper 
and lower boundaries of the limiting load. 

Let the condition for yielding have the form (the Mises-Hill criterion) 

I = o ~ A o  = 1, ( 1 )  

where o is a vector-column composed of stress tensor components; A is a matrix of plastic 
flow characteristics; symbol T means the operation of transposing. 

Equations for equilibrium within the body and at its boundary are written in operator 

form 

Do(x)  = q(x), q(x) = qo(x)t. (2)  

Here D i s  a ma t r ix  of  l i n e a r  d i f f e r e n t i a l  o p e r a t o r s ;  q0(x)  i s  normal ized  e x t e r n a l  load ;  
t is loading parameter; x is radius-vector for a point of the body. 

Coefficient t, is sought on reaching which the structure loses its supporting capacity. 

Lower Estimate. The solution of Eq. (2) is presented in the following symbolic form: 
o = o0t, a 0 = D-~q0 �9 We calculate function I: I = I0 t2, I 0 = o0TAo0 . Let with t = t_ 

stress o be reached for the flow surface of any point of the body. Then 

(I0)m~ t t  = t .  

Since equilibrium equations are satisfied and stresses do not go beyond flow surface 
(i), then according to the static theorem 

t , ~ t _ =  ~ / V ~ m ~ x  �9 (3) 
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